Drukuj
W nieskończonym malejącym ciągu geometrycznym \(\left(a_{n}\right)\), określonym dla \(n \geq 1\), jest spełniony warunek \[ \frac{a_{5}+a_{3}}{a_{3}}=\frac{29}{25} \] Suma wszystkich wyrazów tego ciągu o numerach parzystych jest równa \(6\).
Wyznacz wzór ogólny na \(\boldsymbol{n}\)-ty wyraz ciągu \(\left(a_{n}\right)\). Zapisz obliczenia.
\(a_{n}=\frac{63}{5} \cdot\left(\frac{2}{5}\right)^{n-1}\)
Strony z tym zadaniem
Zadania maturalne CKE 2025 - poziom rozszerzony
Sąsiednie zadania
Zadanie 4324Zadanie 4325
Zadanie 4326 (tu jesteś)
Zadanie 4327Zadanie 4328