Dany jest sześcian \(ABCDEFGH\) o krawędzi długości \(6\). Punkt \(S\) jest punktem przecięcia przekątnych \(AH\) i \(DE\) ściany bocznej \(ADHE\) (zobacz rysunek).
Oblicz wysokość trójkąta \(SBH\) poprowadzoną z punktu \(S\) na bok \(BH\) tego trójkąta. Zapisz obliczenia.