Prosta o równaniu \(y = x + 2\) przecina okrąg o równaniu \((x - 3)^2 + (y - 5)^2 = 25\) w punktach \(A\) i \(B\). Oblicz współrzędne punktów \(A\) i \(B\) oraz wyznacz równanie stycznej do danego okręgu przechodzącej przez jeden z tych punktów.
\(y=-x+8-5\sqrt{2}\)