Poziom podstawowy
Wskaż nierówność, którą spełnia liczba \(5\sqrt{3}\)
A.\( |x-1|\lt 2 \)
B.\( |x-2|\lt 3 \)
C.\( |x-3|\lt 4 \)
D.\( |x-4|\lt 5 \)
D
Gdy \(a+b=10\), to wówczas wartość wyrażenia \(\frac{2a^2+4ab+2b^2}{(a+b)^3}\) jest równa
A.\( 10 \)
B.\( 100 \)
C.\( \frac{1}{5} \)
D.\( \frac{1}{10} \)
C
Cena kurtki po dwóch kolejnych obniżkach, za każdym razem o \(10\%\) jest równa \(202\) zł \(50\) gr. Przed obniżkami cena tej kurtki była równa
A.\(202\) zł \(70\) gr
B.\(222\) zł \(50\) gr
C.\(243\) zł
D.\(250\) zł
D
Liczba \(128^{-4}:\left ( \frac{1}{32} \right )^4\) jest równa
A.\( 4^{-4} \)
B.\( 2^{-4} \)
C.\( 2^4 \)
D.\( 4^4 \)
A
Liczba
\(2\log_3 27 - \log_2 16\) jest równa
A.\(2 \)
B.\(-8 \)
C.\(9 \)
D.\(\frac{3}{2} \)
A
Zbiorem wszystkich rozwiązań nierówności
\(x\sqrt{3}+4\ge 2x+\sqrt{12}\) jest przedział
A.\( (-\infty ,2) \)
B.\( (-\infty ,2 \rangle \)
C.\( \langle 2,+\infty ) \)
D.\( (2,+\infty ) \)
B
Liczba wszystkich rozwiązań równania
\((2x-3)(x^2-x)=0\) jest równa
A.\( 0 \)
B.\( 1 \)
C.\( 2 \)
D.\( 3 \)
D
Miejscem zerowym funkcji liniowej
\(f(x)=-2x+m+7\) jest liczba \(3\). Wynika stąd, że
A.\( m=7 \)
B.\( m=1 \)
C.\( m=-1 \)
D.\( m=-7 \)
C
Dla każdego \(x\ne 2\) wyrażenie \(\frac{x-1}{3x-6}-\frac{2}{x-2}\) jest równe
A.\( \frac{x+1}{3x-6} \)
B.\( \frac{x+5}{3x-6} \)
C.\( \frac{x-7}{3x-6} \)
D.\( \frac{x-3}{3x-6} \)
C
Liczby
\(12, 18, 2x + 1\) są, w podanej kolejności, odpowiednio pierwszym, drugim i trzecim wyrazem ciągu geometrycznego. Wynika stąd, że
A.\( x=11\frac{1}{2} \)
B.\( x=12 \)
C.\( x=12\frac{1}{2} \)
D.\( x=13 \)
D
W ciągu arytmetycznym \((a_n)\) dane są \(a_1=2\)
i \(a_2=4\). Suma dziesięciu początkowych wyrazów tego ciągu jest równa
A.\( 30 \)
B.\( 110 \)
C.\( 220 \)
D.\( 2046 \)
B
Kąt \(\alpha \) jest ostry i \(\sin \alpha =0{,}6\). Wówczas
A.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}4\)
B.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =1{,}5\)
C.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}75\)
D.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =0{,}75\)
C
Proste o równaniach
\(y=2x-5\) i
\(y=(3-m)x+4\) są równoległe. Wynika stąd, że
A.\( m=1 \)
B.\( m=\frac{5}{2} \)
C.\( m=\frac{7}{2} \)
D.\( m=5 \)
A
Proste \(AD\) i \(BC\) są równoległe. Długości odcinków \(ED\), \(DC\) oraz \(AB\) podane są na rysunku. Długość odcinka \(EA\) jest równa
A.\( 4 \)
B.\( 8 \)
C.\( 9 \)
D.\( 10 \)
B
Rysunek przedstawia trapez prostokątny i długości trzech jego boków.
Obwód tego trapezu jest równy
A.\( 43 \)
B.\( 46 \)
C.\( 48 \)
D.\( 50 \)
B
Objętość sześcianu jest równa \(27\). Długość przekątnej tego sześcianu jest równa
A.\( 2\sqrt{2} \)
B.\( 3\sqrt{2} \)
C.\( 2\sqrt{3} \)
D.\( 3\sqrt{3} \)
D
Bok rombu ma długość \(8\), a kąt ostry ma miarę \(60^\circ \). Wysokość tego rombu jest więc równa
A.\( 2\sqrt{3} \)
B.\( 4\sqrt{3} \)
C.\( 6\sqrt{3} \)
D.\( 8\sqrt{3} \)
B
Punkty \(A, B, C, D\) i \(E\) leżą na okręgu o środku \(S\) i dzielą ten okrąg na pięć łuków równej długości (zobacz rysunek).
Wówczas miara kąta ostrego \(\alpha \) między cięciwą \(AB\) i styczną do tego okręgu w punkcie \(A\) jest równa
A.\( \alpha =18^\circ \)
B.\( \alpha =30^\circ \)
C.\( \alpha =36^\circ \)
D.\( \alpha =54^\circ \)
C
Tabela przedstawia zestawienie liczby błędów popełnionych przez zdających część teoretyczną egzaminu na prawo jazdy.
Liczba błędów | \(0\) | \(1\) | \(2\) | \(x\) |
Liczba zdających | \(8\) | \(4\) | \(10\) | \(8\) |
Średnia arytmetyczna liczby tych błędów popełnionych przez jednego zdającego jest równa \(1{,}6\). Wynika stąd, że
A.\( x=3 \)
B.\( x=4 \)
C.\( x=5 \)
D.\( x=6 \)
A
O zdarzeniach \(A\) oraz \(B\) zawartych w \(\Omega \) wiadomo, że \(P(A)=\frac{5}{6}, P(B)=\frac{2}{3}\) i \(A\cup B\) jest zdarzeniem pewnym. Wtedy
A.\( P(A\cap B)=\frac{1}{2} \)
B.\( P(A\cap B)=\frac{1}{3} \)
C.\( P(A\cap B)=\frac{1}{4} \)
D.\( P(A\cap B)=\frac{1}{6} \)
A
Rozwiąż nierówność \(-2x^2+3x+2\le 0\) .
\(x\in \left(-\infty ;-\frac{1}{2}\right\rangle \cup \langle 2;+\infty )\)
Oblicz największą wartość funkcji \(f(x)=-2x^2+16x-15\) w przedziale \(\langle -2,3 \rangle\).
\(15\)
Powierzchnia boczna stożka po rozwinięciu na płaszczyznę jest ćwiartką koła o promieniu \(8\) cm. Oblicz wysokość tego stożka.
\(h=2\sqrt{15}\)
Ciąg \((a_n)\) jest określony dla \(n\ge 1\) wzorem \(a_n=-n^2-4\sqrt{3}\) . Sprawdź którym wyrazem tego ciągu jest liczba \(-3^2-(2+\sqrt{3})^2\).
czwartym
Udowodnij, że dla dowolnych liczb rzeczywistych \(x,y,z\) takich, że \(x+y+z=3\) prawdziwa jest nierówność: \(x^2+y^2+z^2\ge 3\).
Wykaż, że jeżeli ramiona \(AD\) i \(BC\) trapezu \(ABCD\) o podstawach \(AB\) i \(CD\) zawierają się w prostych prostopadłych (zobacz rysunek), to \(|AB|^2 + |CD|^2 = |AC|^2 + |BD|^2\).
Ze zbioru wszystkich liczb naturalnych czterocyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia, że otrzymamy liczbę spełniającą jednocześnie trzy następujące warunki:
(1) liczba jest podzielna przez 25,
(2) cyfry dziesiątek i setek są nieparzyste,
(3) cyfra dziesiątek jest nie większa niż cyfra setek.
\(\frac{1}{200}\)
Prostokątny pas wykładziny dywanowej o wymiarach \(3{,}6\) m na \(7{,}5\) m należy przeciąć prostopadle do dłuższego boku tak, aby przekątne otrzymanych dwóch prostokątnych kawałków różniły się o \(1{,}5\) m. Oblicz wymiary większego z otrzymanych kawałków.
\(4{,}8\) m i \(3{,}6\) m
Prosta o równaniu \(y = x + 2\) przecina okrąg o równaniu \((x - 3)^2 + (y - 5)^2 = 25\) w punktach \(A\) i \(B\). Oblicz współrzędne punktów \(A\) i \(B\) oraz wyznacz równanie stycznej do danego okręgu przechodzącej przez jeden z tych punktów.
\(y=-x+8-5\sqrt{2}\)
Podstawą ostrosłupa \(ABCDS\) jest kwadrat \(ABCD\). Wysokość \(SE\) ściany bocznej \(ADS\) jest jednocześnie wysokością ostrosłupa, a punkt \(E\) jest środkiem krawędzi \(AD\) (zobacz rysunek). Pole ściany \(ADS\) jest równe \(12\) cm
2, a objętość ostrosłupa jest równa \(48\) cm
3. Oblicz miarę kąta nachylenia krawędzi bocznej \(CS\) do płaszczyzny podstawy ostrosłupa. Wynik zaokrąglij do \(1^\circ \).
\(31^\circ \)