Drukuj
Czas \(T\) połowicznego rozpadu izotopu promieniotwórczego to czas, po którym liczba jąder danego izotopu (a zatem i masa tego izotopu) zmniejsza się o połowę – tzn. połowa jąder danego izotopu przemienia się w inne jądra. Liczba jąder \(N(t)\) izotopu promieniotwórczego pozostających w próbce po czasie \(t\), licząc od chwili \(t_0 = 0\), wyraża się zależnością wykładniczą: \[N(t)=N_0\left(\frac{1}{2}\right)^{\frac{t}{T}}\] gdzie \(N_0\) jest liczbą jąder izotopu promieniotwórczego w chwili początkowej \(t_0 = 0\).
Na poniższych rysunkach 1.-4. przedstawiono wykresy różnych zależności.
Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych.
Wykres zależności wykładniczej \(N(t)\) - opisanej we wstępie do zadania - przedstawiono na
A.rysunku 1.
B.rysunku 2.
C.rysunku 3.
D.rysunku 4.
A
Czas połowicznego rozpadu węgla \(^{14}\text{C}\) to około \(5700\) lat. Naukowcy oszacowali za pomocą datowania radiowęglowego, że masa izotopu węgla \(^{14}\text{C}\) w pewnym organicznym znalezisku archeologicznym stanowi \(\frac{1}{16}\) masy tego izotopu, jaka utrzymywała się podczas życia organizmu.
Oblicz, ile lat ma opisane znalezisko archeologiczne. Wynik podaj z dokładnością do stu lat.
\(22\ 800\) lat
Strony z tym zadaniem
Zadania CKE od 2023 - poziom podstawowyMatura podstawowa - zbiór zadań - funkcja wykładnicza i logarytmicznaMatura rozszerzona - zbiór zadań - wykres funkcji logarytmicznejMatura rozszerzona - zbiór zadań - funkcje logarytmiczneZadania maturalne CKE 2025 - poziom podstawowy
Sąsiednie zadania
Zadanie 3461Zadanie 3462
Zadanie 3463 (tu jesteś)
Zadanie 3464Zadanie 3465