Poziom podstawowy
Przeciwprostokątna trójkąta prostokątnego jest średnicą okręgu opisanego na tym trójkącie.
Środek okręgu opisanego leży na środku przeciwprostokątnej.
Długość przeciwprostokątnej można obliczyć ze wzoru: \[c=2r\]
W tym nagraniu wideo omawiam zależność między promieniem okręgu wpisanego i opisanego na trójkącie prostokątnym, a bokami trójkąta.
Dany jest trójkąt prostokątny o przyprostokątnych \(5\) i \(12\). Promień okręgu opisanego na tym trójkącie jest równy
A.\( 12 \)
B.\( 8{,}5 \)
C.\( 6{,}5 \)
D.\( 5 \)
C
Promień okręgu opisanego na trójkącie prostokątnym jest równy \(2\sqrt{5}\). Jedna z przyprostokątnych tego trójkąta jest o \(4\) dłuższa od drugiej przyprostokątnej. Oblicz wysokość tego trójkąta opuszczoną na przeciwprostokątną.
\(h=\frac{8\sqrt{5}}{5}\)