Okrąg wpisany w trójkąt prostokątny

Drukuj
Poziom podstawowy
W trójkąt prostokątny o przyprostokątnych długości \(a\) i \(b\) wpiszemy okrąg o promieniu \(r\). Długość przeciwprostokątnej \(c\) możemy wyrazić wzorem: \[\begin{split} c&=a-r+b-r\\[6pt] c&=a+b-2r \end{split}\]
W tym nagraniu wideo omawiam zależność między promieniem okręgu wpisanego i opisanego na trójkącie prostokątnym, a bokami trójkąta.
Okrąg wpisany w trójkąt prostokątny \(ABC\) jest styczny do przeciwprostokątnej \(AB\) w punkcie \(K\). Wiadomo, że \(|AK| = 4\) i \(|KB| = 6\). Oblicz promień tego okręgu.
\(r=2\)
W trójkącie prostokątnym \(ACB\) przyprostokątna \(AC\) ma długość \(5\), a promień okręgu wpisanego w ten trójkąt jest równy \(2\). Oblicz pole trójkąta \(ACB\).
\(P = 30\)
Poziom rozszerzony
Dany jest prostokąt \(ABCD\). Okrąg wpisany w trójkąt \(BCD\) jest styczny do przekątnej \(BD\) w punkcie \(N\). Okrąg wpisany w trójkąt \(ABD\) jest styczny do boku \(AD\) w punkcie \(M\), a środek \(S\) tego okręgu leży na odcinku \(MN\), jak na rysunku. Wykaż, że \(|MN|=|AD|\).
Dany jest trójkąt prostokątny \(ABC\). Promień okręgu wpisanego w ten trójkąt jest pięć razy krótszy od przeciwprostokątnej tego trójkąta. Oblicz sinus tego z kątów ostrych trójkąta \(ABC\), który ma większą miarę.
Dany jest trójkąt prostokątny \(ABC\), w którym \(|BC| = 30\), \(|AC| = 40\), \(|AB| = 50\). Punkt \(W\) jest środkiem okręgu wpisanego w ten trójkąt. Okrąg wpisany w trójkąt \(ABC\) jest styczny do boku \(AB\) w punkcie \(M\). Oblicz długość odcinka \(CM\).
\(2\sqrt{145}\)
Tematy nadrzędne i sąsiednie