Funkcja kwadratowa \(f\) jest określona wzorem \(f(x)=p x^{2}+(p-1) x+1-2 p\) dla każdego \(x \in \mathbb{R}\).
Wyznacz wszystkie wartości parametru \(\boldsymbol{p}\), dla których funkcja \(\boldsymbol{f}\) ma dokładnie dwa miejsca zerowe różniące się o 1. Zapisz obliczenia.
Funkcja \(f\) ma dokładnie dwa miejsca zerowe różniące się o \(1\) dla \(p=\frac{1}{4}\) lub \(p=\frac{1}{2}\).