W I urnie są \(3\) kule czarne i \(1\) kula Biała. W II urnie są \(2\) kule czarne i \(2\) białe. W III urnie jest \(6\) kul czarnych i \(2\) kule białe. Rzucamy symetryczną sześcienną kostką do gry. Jeżeli wypadnie szóstka, to losujemy kulę z I urny. Jeżeli wypadnie czwórka lub piątka, to losujemy kulę z II urny. W przeciwnym przypadku losujemy kulę z III urny. Oblicz prawdopodobieństwo tego, że wylosowana kula pochodzi z I urny, jeśli wiadomo, że jest to kula czarna.