Niech \(A\) będzie zbiorem wszystkich liczb \(x\), które spełniają równość \(|x - 1| + |x - 3| = 2\). Niech \(B\) będzie zbiorem wszystkich punktów na osi liczbowej, których suma odległości od punktów \(4\) i \(6\) jest niewiększa niż \(4\). Zaznacz na osi liczbowej zbiory \(A\) i \(B\) oraz wszystkie punkty, które należą jednocześnie do \(A\) i do \(B\).
\(A\cap B=\{3\}\)