Zadanie 1308.
W ostrosłupie prawidłowym czworokątnym krawędź podstawy ma długość \(a\). Ostrosłup ten przecięto płaszczyzną przechodzącą przez środki dwóch sąsiednich krawędzi podstawy i wierzchołek ostrosłupa. Płaszczyzna tego przekroju tworzy z płaszczyzną podstawy kąt o mierze \(\alpha\). Oblicz objętość tego ostrosłupa.
Odpowiedź: \(V=\frac{a^3\sqrt{2}\operatorname{tg} \alpha }{12}\)
Opcja dostępna tylko dla
zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.