Poziom podstawowy
Wzory na sumę
Sumę pierwszych \(n\) wyrazów ciągu arytmetycznego możemy obliczyć ze wzoru: \[S_n=\frac{a_1+a_n}{2}\cdot n\] albo ze wzoru: \[S_n=\frac{2a_1+(n-1)r}{2}\cdot n\] Do obliczenia sumy ciągu arytmetycznego od wyrazu \(k\)-tego do wyrazu \(n\)-tego, można skorzystać ze wzoru: \[S_n^k=\frac{a_k+a_n}{2}\cdot (n-k+1)\] Oblicz sumę \(20\) pierwszych wyrazów ciągu arytmetycznego o wzorze ogólnym \(a_n = 3n + 1\).
Obliczamy pierwszy wyraz ciągu: \[a_1 = 3\cdot 1 + 1 = 4\] Teraz obliczamy \(20\) wyraz ciągu: \[a_{20} = 3\cdot 20 + 1 = 61\] Zatem szukana suma wynosi: \[S_n=\frac{a_1+a_{20}}{2}\cdot 20=\frac{4+61}{2}\cdot 20=65\cdot 10=650\]
Oblicz sumę
\(12\) początkowych wyrazów ciągu \(a_n=4n+1\).
\(20\) początkowych wyrazów ciągu \(a_n=3(n-1)+2\).
\(15\) początkowych wyrazów ciągu \(a_n=1+\frac{n}{2}\).
\(10\) początkowych wyrazów ciągu arytmetycznego o pierwszym wyrazie równym \(-3\) i różnicy \(5\).
Pierwszy wyraz ciągu arytmetycznego jest równy \(3\), czwarty wyraz tego ciągu jest równy \(15\). Oblicz sumę sześciu początkowych wyrazów tego ciągu.
\(78\)
W ciągu arytmetycznym \((a_n)\) dane są \(a_1=2\)
i \(a_2=4\). Suma dziesięciu początkowych wyrazów tego ciągu jest równa
A.\( 30 \)
B.\( 110 \)
C.\( 220 \)
D.\( 2046 \)
B
Dany jest ciąg arytmetyczny \((a_n)\) dla którego suma pierwszych \(n\) wyrazów wyraża się wzorem \(S_n=\frac{3}{2}n^2-\frac{11}{2}n\). Wówczas wartość wyrażenia \(\frac{a_5+a_7}{2}\) jest równa
A.\( 11 \)
B.\( \frac{11}{2} \)
C.\( \frac{3}{2} \)
D.\( 3 \)
A
Suma dziesięciu początkowych wyrazów ciągu arytmetycznego \( (a_n) \) jest równa \( 35 \). Pierwszy wyraz \( a_1 \) tego ciągu jest równy \( 3 \). Wtedy
A.\(a_{10}=\frac{7}{2} \)
B.\(a_{10}=4 \)
C.\(a_{10}=\frac{32}{5} \)
D.\(a_{10}=32 \)
B
W ciągu arytmetycznym \((a_n)\), określonym dla \(n\ge1\), dane są dwa wyrazy: \(a_1 = 7\) i \(a_8 = -49\). Suma ośmiu początkowych wyrazów tego ciągu jest równa
A.\( -168 \)
B.\( -189 \)
C.\( -21 \)
D.\( -42 \)
\(-168\)
W ciągu arytmetycznym \((a_n)\), określonym dla \(n\ge1\), dane są dwa wyrazy: \(a_1=-11\) i \(a_9=5\). Suma dziewięciu początkowych wyrazów tego ciągu jest równa
A.\( -24 \)
B.\( -27 \)
C.\( -16 \)
D.\( -18 \)
B
Szósty wyraz ciągu arytmetycznego \((a_n)\) jest równy zero. Suma jedenastu wyrazów tego ciągu ma wartość:
A.\( 0 \)
B.\( 5 \)
C.\( 11 \)
D.\( -11 \)
A
Dwunasty wyraz ciągu arytmetycznego \((a_n)\), określonego dla \(n \ge 1\), jest równy \(30\), a suma jego dwunastu początkowych wyrazów jest równa \(162\). Oblicz pierwszy wyraz tego ciągu.
\(a_1 = -3\)
W ciągu arytmetycznym \((a_n)\) suma trzydziestu początkowych wyrazów tego ciągu jest równa \(1245\) oraz \(a_1=-2\). Wtedy
A. \(a_{30}=81\)
B. \(a_{30}=85\)
C. \(a_{30}=175\)
D. \(a_{30}=1247\)
B
W ciągu arytmetycznym \(a_1=3\) oraz \(a_{20}=7\). Wtedy suma \(S_{20}= a_1+a_2+...+a_{19}+ a_{20}\) jest równa
A.\( 95 \)
B.\( 200 \)
C.\( 230 \)
D.\( 100 \)
D
Piąty wyraz ciągu arytmetycznego jest równy \(26\), a suma pięciu początkowych wyrazów tego ciągu jest równa \(70\). Oblicz pierwszy wyraz tego ciągu.
\(a_1=2\)
Dane są dwa ciągi arytmetyczne: \(1, 4, 7,…\) oraz \(20, 21, 22,…\) Zsumowano \(n\) początkowych wyrazów pierwszego ciągu i \(n\) początkowych wyrazów drugiego ciągu. Okazało się, że otrzymano równe sumy. Wyznacz \(n\).
W ciągu arytmetycznym \(a_n\) dla \(n\ge 1\), \(a_1=8\) oraz \(a_1+a_2+a_3=33\). Wtedy suma \(a_4+a_5+a_6\) jest równa
A.\( 44 \)
B.\( 60 \)
C.\( 69 \)
D.\( 93 \)
B
Suma \(23\) początkowych wyrazów ciągu arytmetycznego \((a_n)\) dla \(n\ge 1\) jest równa \(1564\). Oblicz średnią arytmetyczną wyrazów \(a_3\) i \(a_{21}\).
\(68\)
W skończonym ciągu arytmetycznym \((a_n)\) pierwszy wyraz \(a_1\) jest równy \(7\) oraz ostatni wyraz \(a_n\) jest równy \(89\). Suma wszystkich wyrazów tego ciągu jest równa \(2016\). Oblicz, ile wyrazów ma ten ciąg.
\(42\)
Dla każdej liczby całkowitej dodatniej \(n\) suma \(n\) początkowych wyrazów ciągu arytmetycznego \((a_n)\) jest określona wzorem \(S_n=2n^2+n\). Wtedy wyraz \(a_2\) jest równy
A.\( 3 \)
B.\( 6 \)
C.\( 7 \)
D.\( 10 \)
C
W ciągu arytmetycznym \((a_n)\), określonym dla \(n\ge 1\), dane są: wyraz \(a_1=8\) i suma trzech początkowych wyrazów tego ciągu \(S_3=33\). Oblicz różnicę: \(a_{16}-a_{13}\).
\(9\)
Suma trzydziestu początkowych wyrazów ciągu arytmetycznego \((a_n)\), określonego dla \(n\ge 1\), jest równa \(30\). Ponadto \(a_{30}=30\). Oblicz różnicę tego ciągu.
\(r=2\)
Suma \(n\) początkowych wyrazów ciągu arytmetycznego wyraża się wzorem \(S_n=3n^2+4n\). Piąty wyraz tego ciągu jest równy:
A.\( 45 \)
B.\( 31 \)
C.\( 21 \)
D.\( 11 \)
\[a_5=?\]
B
W pewnym ciągu arytmetycznym suma dwóch pierwszych wyrazów jest równa \(5\frac{1}{2}\), a suma trzech pierwszych wyrazów jest równa \(12\). Pierwszy wyraz tego ciągu jest równy:
A.\( 1\frac{1}{2} \)
B.\( 4\frac{1}{2} \)
C.\( -\frac{1}{2} \)
D.\( 1 \)
A
W ciągu arytmetycznym \((a_n)\), określonym dla \(n\ge1\), czwarty wyraz jest równy \(3\), a różnica tego ciągu jest równa \(5\). Suma \(a_1+a_2+a_3+a_4\) jest równa
A.\( -42 \)
B.\( -36 \)
C.\( -18 \)
D.\( 6 \)
C
Dziewiąty wyraz ciągu arytmetycznego \((a_n)\), określonego dla \(n \ge 1\), jest równy \(34\), a suma jego ośmiu początkowych wyrazów jest równa \(110\). Oblicz pierwszy wyraz i różnicę tego ciągu.
\(a_1 = -2\), \(r = 4\frac{1}{2}\)
Wyznacz liczbę
\(n\) wyrazów ciągu arytmetycznego, mając dane:
a)
\(S_n=407,\ \ a_1=62,\ \ a_n=12;\)
b)
\(S_n=1016{,}5,\ \ a_1=22,\ \ a_n=85;\)
c)
\(S_n=420,\ \ a_1=7,\ \ r=3;\)
d)
\(S_n=204,\ \ r=6,\ \ a_n=49;\)
e)
\(S_n=578,\ \ a_1=58,\ \ r=-3;\)
f)
\(S_n=456,\ \ r=-12,\ \ a_n=15;\)
Wyznacz różnicę
\(r\) wyrazów ciągu arytmetycznego, mając dane:
a)
\(S_n=518,\ \ a_1=50,\ \ n=14;\)
b)
\(S_n=728,\ \ n=16,\ \ a_n=63;\)
c)
\(S_n=1675,\ \ n=25,\ \ a_n=1;\)
d)
\(S_n=2241,\ \ n=27,\ \ a_n=148;\)
Znajdź sumę trzydziestu kolejnych liczb będących wielokrotnościami \(9\) (zaczynając od \(9\)).
\(4185\)
Znajdź sumę pięćdziesięciu kolejnych liczb będących wielokrotnościami \(12\) (zaczynając od \(24\)).
\(15900\)
Znajdź sumę:
a)
wszystkich liczb całkowitych od \(0\) do \(150\) włącznie
b)
wszystkich liczb parzystych od \(0\) do \(150\) włącznie
c)
wszystkich liczb nieparzystych od \(0\) do \(150\)
Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez \(7\) dają resztę \(2\), wynosi \(43950\). Wyznacz najmniejszą i największą z tych liczb.
Wyznacz wzór na \(n\)-ty wyraz ciągu, którego suma \(n\) początkowych wyrazów wyraża się wzorem:
d)
\(S_n=\frac{1}{2}n-\frac{1}{4}n^2;\)
Wykaż, że każdy z tych ciągów jest ciągiem arytmetycznym.
Trójwyrazowy ciąg \((x, y - 4, y)\) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa \(6\). Oblicz wszystkie wyrazy tego ciągu.
\(-2,\ 2,\ 6\)
W ciągu arytmetycznym \(a_n\), określonym dla każdej liczby naturalnej \(n\ge1\), \(a_1=-1\) i \(a_4=8\). Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.
\(14750\)
W ciągu arytmetycznym \((a_1,a_2,...,a_{39},a_{40})\) suma wyrazów tego ciągu o numerach parzystych jest równa \(1340\), a suma wyrazów ciągu o numerach nieparzystych jest równa \(1400\). Wyznacz ostatni wyraz tego ciągu arytmetycznego.
\(10\)
Ciąg arytmetyczny \((a_n)\) określony jest wzorem \(a_n=2016-3n\), dla \(n\ge 1\). Oblicz sumę wszystkich dodatnich wyrazów tego ciągu.
\(676368\)
W ciągu arytmetycznym \((a_n)\), określonym dla liczb naturalnych \(n\ge1\), wyraz szósty jest liczbą dwa razy większą od wyrazu piątego, a suma dziesięciu początkowych wyrazów tego ciągu jest równa \(S_{10}=\frac{15}{4}\). Oblicz wyraz pierwszy oraz różnicę tego ciągu.
\(a_1=-\frac{3}{4}\), \(r=\frac{1}{4}\)
Dany jest ciąg arytmetyczny \((a_n)\) określony dla każdej liczby naturalnej \(n\ge 1\), w którym \(a_1+a_2+a_3+a_4=2016\) oraz \(a_5+a_6+a_7+...+a_{12}=2016\). Oblicz pierwszy wyraz, różnicę oraz najmniejszy dodatni wyraz ciągu \((a_n)\).
\(a_1=567\), \(r=-42\), \(a_{14}=21\)
Suma \(n\) początkowych wyrazów ciągu arytmetycznego \((a_n)\) dana jest wzorem \(S_n=\frac{n^2-25n}{4}\), gdzie \(n\ge 1\). Różnica ciągu arytmetycznego \((b_n)\) jest równa \(\frac{3}{2}\) oraz jego piąty wyraz jest równy \(8\). Wyznacz sumę \(17\) początkowych wyrazów ciągu arytmetycznego \((c_n)\), wiedząc, że \(c_n=2b_n-a_8\), gdzie \(n\ge 1\).
\(518\frac{1}{2}\)
Dany jest skończony ciąg, w którym pierwszy wyraz jest równy \(444\), a ostatni jest równy \(653\). Każdy wyraz tego ciągu, począwszy od drugiego, jest o 11 większy od wyrazu bezpośrednio go poprzedzającego. Oblicz sumę wszystkich wyrazów tego ciągu.
\(10970\)
Ciąg \((a_n)\) jest określony dla \(n\ge 1\) wzorem: \(a_n=2n-1\). Suma jedenastu początkowych wyrazów tego ciągu jest równa
A.\( 101 \)
B.\( 121 \)
C.\( 99 \)
D.\( 81 \)
B