Dane są dwa półokręgi o wspólnym środku \(O\) i średnicach odpowiednio \(AB\) i \(CD\) (punkty \(A, B, C, D\) i \(O\) są współliniowe). Punkt \(P\) leży na wewnętrznym półokręgu, punkt \(R\) leży na zewnętrznym półokręgu, punkty \(O, P\) i \(R\) są współliniowe. Udowodnij, że \(|\sphericalangle APB| + |\sphericalangle CRD| = 180^\circ\).