Operator | Function | Example | Example with parameter |
+ | addition | 2x+3 | ax+b |
- | subtraction | 2x-3 | ax-b |
* | multiplication | 2*x | a*x |
/ | division | 3/x | a/x |
^ | exponentiation | x^3 | a(x-b)^4+c |
sqrt() | roots | sqrt(2x) | sqrt(ax)-b |
| • | | absolute value | |x+5|-4 | |x-p|-q |
log() | he natural logarithm | log(x) | log(ax)-b |
sin() | sine | sin(x^2) | a*sin(bx)+c |
cos() | cosine | cos(3x-1) | a*cos(bx-p)+q |
tg() | tangent | tg(x) | tg(x/a) |
ctg() | cotangent | 3ctg(x/10) | a*ctg(x/b) |
Name of function | Function formula |
The linear function | ax+b |
The quadratic function (general form) | ax^2+bx+c |
The quadratic function (multiplicative form) | a(x-b)(x-c) |
The quadratic function (canonical form) | a(x-p)^2+q |
The function of the absolute value | a|x-p|+q |
A homographic function | a/(x-p)+q |
3 degree polynomial function | ax^3+bx^2+cx+p |
Description of the example | Formula |
The linear and quadratic function | ax+b;c(x-p)^2+q |
Analysis of the number of solutions of the equation with a parameter: x2 - x - 6 = m | x^2-x-6;m |
Area bounded by the paiabola and the axis Ox | ax^2+bx+c;0 |
The area under the sine | a*sin(bx);0 |
Graphical solution of inequalities: xsin(x) > mx^2 depending on the parameter m | xsin(x);mx^2 |
Number of solutions of equation: |||x - a| - b| - c| = m depending on the parameter a, b, c oraz m | |||x-a|-b|-c|;m |
Calculation of the field described by the system of inequalities: \begin{cases} \frac{1}{x}\gt m\cdot \sin x \\ \frac{1}{5}\lt x\lt 5 \end{cases} w zależności od parametru m | 1/x;m*sin(x) |