Powers and roots - formulas
Here is a summary of the most important formulas of action on powers and roots.
Examples of the use of these formulas can be found in the next sections.
The power of natural exponent \[a^n=\underbrace{a\cdot a\cdot a\cdot...\cdot a}_{n \text{ times}}\]
The power of rational exponent \[ a^{-n}=\frac{1}{a^n}\quad (\text{for }a\ne 0)\\[16pt] a^{\tfrac{1}{n}}=\sqrt[n]{a}\quad (\text{for }a\ge 0)\\[16pt] a^{\tfrac{k}{n}}=\sqrt[n]{a^k}\quad (\text{for }a\ge 0)\\[16pt] a^{-\tfrac{k}{n}}=\frac{1}{\sqrt[n]{a^k}}\quad (\text{for }a\gt 0)\\[16pt] \]
Powers - formulas \[ a^m\cdot a^n=a^{m+n}\\[16pt] \frac{a^m}{a^n}=a^{m-n}\\[16pt] a^n\cdot b^n=(a\cdot b)^n\\[16pt] \frac{a^n}{b^n}=\left (\frac{a}{b}\right )^n\\[16pt] \left(a^m \right)^n=a^{m\cdot n} \]
Roots - formulas \[ \sqrt{a}\cdot \sqrt{b}=\sqrt{a\cdot b}\\[16pt] \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}} \] Actions on more complex roots is usually done by transforming them into powers. \[ \sqrt[n]{a}=a^{\tfrac{1}{n}}\\[16pt] \sqrt[n]{a}\cdot \sqrt[m]{a}=a^{\tfrac{1}{n}}\cdot a^{\tfrac{1}{m}}=a^{\tfrac{1}{n}+\tfrac{1}{m}}\\[16pt] \frac{\sqrt[n]{a}}{\sqrt[m]{a}} =\frac{a^{\tfrac{1}{n}}}{a^{\tfrac{1}{m}}} =a^{\tfrac{1}{n}-\tfrac{1}{m}}\\[16pt] \]
Another formulas \[ a^0=1\quad (\text{for }a\ne 0)\\[16pt] \sqrt{a^2}=|a| \]
Previous topic
NumbersNext topic
Square