Matura rozszerzona - zbiór zadań - wzór Bayesa

Drukuj
Poziom rozszerzony
W I urnie są \(3\) kule czarne i \(1\) kula Biała. W II urnie są \(2\) kule czarne i \(2\) białe. W III urnie jest \(6\) kul czarnych i \(2\) kule białe. Rzucamy symetryczną sześcienną kostką do gry. Jeżeli wypadnie szóstka, to losujemy kulę z I urny. Jeżeli wypadnie czwórka lub piątka, to losujemy kulę z II urny. W przeciwnym przypadku losujemy kulę z III urny. Oblicz prawdopodobieństwo tego, że wylosowana kula pochodzi z I urny, jeśli wiadomo, że jest to kula czarna.
W urnie I są \(3\) kule białe i \(2\) kule czarne, a w urnie II jest \(7\) kul białych i \(4\) kule czarne. Z urny I przekładamy losową kulę do urny II, a następnie losujemy kulę z urny II. Oblicz prawdopodobieństwo tego, że przełożono kulę czarną, jeśli z urny II wylosowano kulę białą.
Pewna choroba dotyka \(0,2 \%\) całej populacji i w początkowym stadium nie daje widocznych objawów chorobowych. W ramach profilaktyki stosuje się pewien test przesiewowy, który daje wynik pozytywny lub negatywny. Prawdopodobieństwo tego, że test wykonany na osobie chorej da wynik pozytywny (oznaczający chorobę), jest równe \(0,99\). Ponadto wiadomo, że prawdopodobieństwo tego, że test wykonany na osobie zdrowej da wynik negatywny, jest równe \(0,98\).
Pan X poddał się testowi, który dał wynik pozytywny. Pozytywny wynik oznacza podejrzenie choroby.
Oblicz prawdopodobieństwo tego, że pan X jest rzeczywiście chory. Wynik zapisz w postaci ułamka dziesiętnego w zaokrągleniu do części setnych. Zapisz obliczenia.
\(\frac{99}{1097} \approx 0,09\)
Z dwóch kostek jedna jest symetryczna, a dla drugiej prawdopodobieństwo otrzymania \(6\) jest równy \(\frac{1}{5}\). Rzucono dwukrotnie losowo wybraną kostką i wypadły dwie szóstki. Oblicz prawdopodobieństwo tego, że rzucono kostką niesymetryczną.
Sklep handluje jabłkami dostarczonymi przez dwóch producentów. Wśród jabłek dostarczonych przez producenta pierwszego \(5\%\) jabłek jest popsutych, a wśród jabłek dostarczonych przez producenta drugiego \(10\%\) jabłek jest popsutych. Sklep zamawia \(4\) razy więcej jabłek u producenta pierwszego. W tym sklepie zostało kupione jedno jabłko. Oblicz jakie jest prawdopodobieństwo, że jabłko pochodzi od pierwszego producenta, jeżeli nie było popsute.
W pewnej lokalnej społeczności \(35 \%\) osób ma wyższe wykształcenie. W tej społeczności językiem niemieckim dobrze włada \(70 \%\) osób mających wyższe wykształcenie i \(40 \%\) osób bez wyższego wykształcenia.
Spośród członków tej społeczności wybieramy losowo jedną osobę.
Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wybierzemy osobę z wyższym wykształceniem, jeżeli wiadomo, że ta osoba dobrze włada językiem niemieckim. Wynik zapisz w postaci ułamka dziesiętnego w zaokrągleniu do części setnych. Zapisz obliczenia.
\(P(B1|A)\simeq 0,49\)
Tematy nadrzędne