KURS - matura rozszerzona 2025

Drukuj
Poziom rozszerzony
Kurs do matury rozszerzonej z matematyki dla uczniów zdających maturę w formule 2023, według nowej podstawy programowej, obowiązującej od roku 2025.
Informacje o kursie:
  • Zgodny z formułą 2023 oraz zaktualizowanymi wymaganiami do matury od 2025 roku.
  • Zawiera wybrane lekcje z kursów z ubiegłych lat, które są w 100% zgodne z wymaganiami do matury od 2025 roku.
  • Zawiera nowe lekcje opracowane na podstawie zaktualizowanych wymagań CKE obowiązujących od matury 2025.
Kurs rozszerzony dla osób zdających maturę w formule 2015 jest tutaj: kurs - formuła 2015.
Szybka nawigacja do działów kursu:

Blok I - Liczby rzeczywiste

Zagadnienia CKE omawiane w lekcji:
  • Wzór na zamianę podstawy logarytmu.
  • Inne wzory związane z logarytmami.
  • Zadania dowodowe z logarytmów.
Czas nagrania: 48 min.
Zagadnienia CKE omawiane w lekcji:
  • Dowody dotyczące podzielności liczb całkowitych i reszt z dzielenia.
  • Stosowanie potęg i pierwiastków w zadaniach dowodowych.
  • Wzory skróconego mnożenia w zadaniach dowodowych.
Czas nagrania: 38 min.

Blok II - Wyrażenia algebraiczne, równania i nierówności

Materiał z prostymi zagadnieniami z wielomianów, wykraczający od 2025 roku ponad poziom podstawowy.
Zagadnienia CKE omawiane w lekcji:
  • Wyłączanie poza nawias jednomianu z sumy algebraicznej;
  • Rozkładanie wielomianu na czynniki metodą wyłączania wspólnego czynnika przed nawias oraz metodą grupowania wyrazów;
  • Rozwiązywanie równań wielomianowych postaci \(W(x)=0\) dla wielomianów doprowadzonych do postaci iloczynowej lub takich, które dają się doprowadzić do postaci iloczynowej metodą wyłączania wspólnego czynnika przed nawias lub metodą grupowania;
  • Interpretowanie miejsca zerowego wielomianu.
Zagadnienia CKE omawiane w lekcji:
  • Pierwiastki całkowite wielomianu o współczynnikach całkowitych.
  • Dzielenie pisemne wielomianu przez dwumian \((x-a)\).
  • Równanie wielomianowe dwukwadratowe.
Zagadnienia CKE omawiane w lekcji:
  • Twierdzenie o reszcie z dzielenia wielomianu przez dwumian postaci \(x−a\).
Zagadnienia CKE omawiane w lekcji:
  • uczeń stosuje podstawowe własności trójkąta Pascala oraz następujące własności współczynnika dwumianowego (symbolu Newtona):
    \(\binom{n}{0}=1,\ \binom{n}{1}=n\), \(\binom{n}{n-1}=n\),
    \(\binom{n}{k}=\binom{n}{n-k}\),
    \(\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1} \)
  • uczeń korzysta ze wzorów na: \(a^3+b^3,\ a^3-b^3,\ a^n-b^n,\ (a+b)^n\) i \((a-b)^n\)
Materiał uzupełniający:
  • Równania wielomianowe dające się łatwo sprowadzić do równań kwadratowych.
Zagadnienia CKE omawiane w lekcji:
  • Rozwiązuje nierówności wielomianowe typu: \(W(x)\gt 0\), \(W(x)\ge 0\), \(W(x)\lt 0\), \(W(x)\le 0\) dla wielomianów doprowadzonych do postaci iloczynowej lub takich, które dają się doprowadzić do postaci iloczynowej metodą wyłączania wspólnego czynnika przed nawias lub metodą grupowania.
Materiał z prostymi zagadnieniami z wyrażeń wymiernych, wykraczający od 2025 roku ponad poziom podstawowy.
Zagadnienia CKE omawiane w lekcji:
  • Mnożenie i dzielenie wyrażeń wymiernych;
  • Dodawanie i odejmowanie wyrażeń wymiernych, w przypadkach nie trudniejszych niż: \(\frac{1}{x+1}-\frac{1}{x}\), \(\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}\), \(\frac{x+1}{x+2}+\frac{x-1}{x+1}\).
  • Równania wymierne postaci \(\frac{V(x)}{W(x)}=0\), gdzie wielomiany \(V(x)\) i \(W(x)\) są zapisane w postaci iloczynowej.
Materiał uzupełniający:
  • Uczeń wyznacza dziedzinę prostego wyrażenia wymiernego z jedną zmienną, w którym w mianowniku występują tylko wyrażenia dające się łatwo sprowadzić do iloczynu wielomianów liniowych i kwadratowych.
Zagadnienia CKE omawiane w lekcji:
  • rozwiązuje równania i nierówności wymierne nie trudniejsze niż
    \(\frac{x+1}{x(x-1)}+\frac{1}{x+1}\ge\frac{2x}{(x-1)(x+1)}\)
Zagadnienia CKE omawiane w lekcji:
  • Stosuje wzory Viete'a dla równań kwadratowych.
Zagadnienia CKE omawiane w lekcji:
  • Analizuje równania i nierówności liniowe z parametrami oraz równania i nierówności kwadratowe z parametrami, w szczególności wyznacza liczbę rozwiązań w zależności od parametrów, podaje warunki, przy których rozwiązania mają żądaną własność, i wyznacza rozwiązania w zależności od parametrów.
Zagadnienia CKE omawiane w lekcji:
  • Rozwiązuje równania i nierówności z wartością bezwzględną, o stopniu trudności nie większym niż: \(2|x+3|+3|x-1|=13\), \(|x+2|+2|x-3|\lt11\)
Zagadnienia CKE omawiane w lekcji:
  • rozwiązuje metodą podstawiania układy równań, z których jedno jest liniowe, a drugie kwadratowe, postaci \(\begin{cases} ax+by=e \\ x^2+y^2+cx+dy=f \end{cases} \) lub \(\begin{cases} ax+by=e \\ y=cx^2+dx+f \end{cases} \)
  • rozwiązuje układy równań kwadratowych postaci \(\begin{cases} x^2+y^2+ax+by=c \\ x^2+y^2+dx+ey=f \end{cases} \)
Czas nagrania: 38 min.

Blok III - Funkcje

Zagadnienia CKE omawiane w lekcji:
  • Uczeń na podstawie wykresu funkcji \(y=f(x)\) szkicuje wykresy funkcji \(y=f(x-a)\), \(y=f(x)+b\), \(y=-f(x)\), \(y=f(-x)\).
Materiał uzupełniający:
  • Przekształcanie wykresu funkcji homograficznej.
Zagadnienia CKE omawiane w lekcji:
  • Uczeń posługuje się złożeniami funkcji.
Materiał uzupełniający:
  • Rysowanie i przekształcanie wykresów funkcji wykładniczych i logarytmicznych.
  • Dziedzina funkcji logarytmicznej.
  • Badanie liczby rozwiązań równań z parametrem.
Czas nagrania: 46 min.
Materiał uzupełniający:
  • Uczeń szkicuje wykres funkcji określonej w różnych przedziałach różnymi wzorami; odczytuje własności takiej funkcji z wykresu.

Blok IV - Ciągi

Zagadnienia CKE omawiane w lekcji:
  • Różne zadania z ciągów, a w szczególności takie, w których występuje jednocześnie ciąg arytmetyczny i geometryczny.
Zagadnienia CKE omawiane w lekcji:
  • oblicza granice ciągów, korzystając z granic ciągów typu \(\frac{1}{n}\), \(\sqrt[n]{a}\) oraz twierdzeń o granicach sumy, różnicy, iloczynu i ilorazu ciągów zbieżnych, a także twierdzenia o trzech ciągach.
Zagadnienia CKE omawiane w lekcji:
  • rozpoznaje zbieżne szeregi geometryczne i oblicza ich sumę.

Blok V - Trygonometria

Zagadnienia CKE omawiane w lekcji:
  • stosuje miarę łukową, zamienia miarę łukową kąta na stopniową i odwrotnie.
Zagadnienia CKE omawiane w lekcji:
  • Uczeń wykorzystuje definicje i wyznacza wartości funkcji sinus, cosinus i tangens dowolnego kąta o mierze wyrażonej w stopniach lub radianach.
  • Posługuje się wykresami funkcji trygonometrycznych: sinus, cosinus, tangens
  • Stosuje wzory redukcyjne dla funkcji trygonometrycznych.
Zagadnienia CKE omawiane w lekcji:
  • Uczeń wykorzystuje okresowość funkcji trygonometrycznych.
  • Wykresy funkcji trygonometrycznych.
Zagadnienia CKE omawiane w lekcji:
  • korzysta z wzorów na sinus, cosinus i tangens sumy i różnicy kątów, a także na funkcje trygonometryczne kątów podwojonych;
Zagadnienia CKE omawiane w lekcji:
  • Uczeń rozwiązuje równania trygonometryczne.
  • Uczeń korzysta z wzorów na sinus, cosinus i tangens sumy i różnicy kątów, a także na funkcje trygonometryczne kątów podwojonych.
Zagadnienia CKE omawiane w lekcji:
  • Uczeń stosuje twierdzenie sinusów i cosinusów.
  • Uczeń oblicza kąty trójkąta i długości jego boków przy odpowiednich danych (m.in. z wykorzystaniem twierdzenia sinusów).

Blok VI - Planimetria

Zagadnienia CKE omawiane w lekcji:
  • stosuje własności czworokątów wpisanych w okrąg i opisanych na okręgu.
Zagadnienia CKE omawiane w lekcji:
  • twierdzenie Talesa i odwrotne do twierdzenia Talesa
Materiał uzupełniający:
  • W wymaganiach do matury rozszerzonej w 2025 roku nie ma jednokładności i obowiązuje jedynie umiejętność stosowania podobieństwa figur.
Zagadnienia CKE omawiane w lekcji:
  • Dowody matematyczne w planimetrii.
  • Powtórka różnych tematów z geometrii płaskiej.

Blok VII - Geometria analityczna

Zagadnienia CKE omawiane w lekcji:
  • Pojęcie wektora i obliczanie jego współrzędne oraz długość.
Zagadnienia CKE omawiane w lekcji:
  • Równanie prostej w postaci ogólnej na płaszczyźnie, w tym wyznaczanie równanie prostej o zadanych własnościach (takich jak na przykład przechodzenie przez dwa dane punkty, równoległość lub prostopadłość do innej prostej, styczność do okręgu.
  • Powtórka wybranych zagadnień z poziomu podstawowego
Materiał uzupełniający:
  • Stosowanie wektorów do opisu przesunięcia wykresu funkcji.
Zagadnienia CKE omawiane w lekcji:
  • Punkty wspólne prostej i okręgu
  • Różne zadania z okręgów
Zagadnienia CKE omawiane w lekcji:
  • Punkty wspólne prostej i paraboli będącej wykresem funkcji kwadratowej.

Blok VIII - Stereometria

Zagadnienia CKE omawiane w lekcji:
  • zna i stosuje twierdzenie o prostej prostopadłej do płaszczyzny i o trzech prostopadłych
Zagadnienia CKE omawiane w lekcji:
  • Posługuje się pojęciem kąta dwuściennego między półpłaszczyznami.
  • Rozpoznaje w graniastosłupach i ostrosłupach kąty między ścianami, oblicza miary tych kątów.
Zagadnienia CKE omawiane w lekcji:
  • Określa, jaką figurą jest dany przekrój prostopadłościanu płaszczyzną.
  • Wyznacza przekroje sześcianu i ostrosłupów prawidłowych oraz oblicza ich pola, także z wykorzystaniem trygonometrii.
Zagadnienia CKE omawiane w lekcji:
  • Uczeń oblicza objętości i pola powierzchni walca, stożka i kuli, również z wykorzystaniem trygonometrii.
  • Uczeń wykorzystuje zależność między objętościami brył podobnych.

Blok IX - Kombinatoryka i rachunek prawdopodobieństwa

Zagadnienia CKE omawiane w lekcji:
  • Oblicza liczbę możliwych sytuacji, spełniających określone kryteria, z wykorzystaniem reguły mnożenia i dodawania (także łącznie) oraz wzorów na liczbę: permutacji, kombinacji i wariacji, również w przypadkach wymagających rozważenia złożonego modelu zliczania elementów.
  • Stosuje współczynnik dwumianowy (symbol Newtona) i jego własności przy rozwiązywaniu problemów kombinatorycznych.
Zagadnienia CKE omawiane w lekcji:
  • oblicza prawdopodobieństwo warunkowe
Zagadnienia CKE omawiane w lekcji:
  • Stosuje twierdzenie o prawdopodobieństwie całkowitym.
Zagadnienia CKE omawiane w lekcji:
  • Uczeń stosuje wzór Bayesa.
Zagadnienia CKE omawiane w lekcji:
  • Stosuje schemat Bernoulliego.

Blok X - Optymalizacja i rachunek różniczkowy

Zagadnienia CKE omawiane w lekcji:
  • Oblicza granice funkcji (w tym jednostronne).
Zagadnienia CKE omawiane w lekcji:
  • Uczeń stosuje własność Darboux do uzasadniania istnienia miejsca zerowego funkcji.
Zagadnienia CKE omawiane w lekcji:
  • Oblicza pochodną funkcji potęgowej o wykładniku rzeczywistym oraz oblicza pochodną, korzystając z twierdzeń o pochodnej sumy, różnicy, iloczynu, ilorazu;
Zagadnienia CKE omawiane w lekcji:
  • Obliczanie pochodnej funkcji złożonej.
Zagadnienia CKE omawiane w lekcji:
  • Definicja pochodnej funkcji, interpretacja geometryczna i fizyczna pochodnej.
  • Styczna do wykresu funkcji
Zagadnienia CKE omawiane w lekcji:
  • Stosuje pochodną do badania monotoniczności funkcji.
  • Dowodzi monotoniczności funkcji zadanej wzorem, jak w przykładzie: wykaż, że funkcja \(f(x)=\frac{x-1}{x+2}\) jest monotoniczna w przedziale \((-\infty ,-2)\).
  • Uczeń znajduje ekstrema funkcji wielomianowych i wymiernych.
Zagadnienia CKE omawiane w lekcji:
  • Rozwiązuje zadania optymalizacyjne z zastosowaniem pochodnej.
Tematy nadrzędne i sąsiednie