Główna
Szkoła
Matura
Arkusze maturalne
Studia
Egzamin ósmoklasisty
Inne
Logowanie
KURS - matura rozszerzona 2025
Matura rozszerzona - zbiór zadań - Własność Darboux
Drukuj
Poziom rozszerzony
Funkcja \(f\) jest określona wzorem \(f(x)=\frac{2 x-3}{x+2}+4 \log _{\frac{1}{2}} x\) dla każdego \(x\gt 0\).
Wykaż, że funkcja \(\boldsymbol{f}\) ma co najmniej jedno miejsce zerowe, które należy do przedziału \(\left[\frac{1}{2}, 4\right]\).
Funkcja \(f\) jest określona wzorem \(f(x)=x^{6}-2 x^{4}-x^{3}+1\) dla każdego \(x \in \mathbb{R}\).
Wykaż, że liczba \(5\) należy do zbioru wartości tej funkcji.
Skorzystaj z własności Darboux.
Wykaż, że równanie \(x^{4}-7 x^{3}+9 x^{2}+8 x-2=0\) ma w przedziale \((-2,2)\) co najmniej dwa różne rozwiązania.
Skorzystaj z własności Darboux.
Tematy nadrzędne
KURS - matura rozszerzona 2025