Matura rozszerzona - zbiór zadań - równania i nierówności z parametrem

Drukuj
Poziom rozszerzony
Równanie \((x^2+2x-3)(x^2+x-m)=0\) ma cztery różne rozwiązania. Zatem zbiór wszystkich liczb \(m\) to:
A.\( \left \langle -\frac{1}{4},+\infty \right ) \)
B.\( \left ( -\frac{1}{4},+\infty \right )\backslash \{2,6\} \)
C.\( \left ( -\frac{1}{4},+\infty \right )\backslash \{-2,6\} \)
D.\( \left ( -\frac{1}{4},+\infty \right ) \)
Dla jakiego parametru \(m\) równanie ma cztery różne rozwiązania rzeczywiste?
B
Wyznacz wszystkie wartości parametru \(k\), dla których równanie \(k^2x-1=x(3k-2)-k\) ma rozwiązanie w zbiorze liczb rzeczywistych.
\(k\ne 2\)
Udowodnij, że dla każdej liczby rzeczywistej \(x\) i każdej liczby rzeczywistej \(m\) prawdziwa jest nierówność \(8x^2-4mx+2m^2\ge 12x+6m-18\)
Określ liczbę rozwiązań równania \(mx^2+mx-1-2m=0\), gdzie \(x\in \langle -2,2 \rangle \), w zależności od wartości parametru \(m\in \mathbb{R} \).
\(0\) rozwiązań dla \(m\in (-\frac{4}{9}, \frac{1}{4})\)
\(1\) rozwiązanie dla \(m\ge \frac{1}{4}\lor m=-\frac{4}{9}\)
\(2\) rozwiązania dla \(m\lt -\frac{4}{9}\)
Funkcja \(f\), której dziedziną jest zbiór wszystkich liczb rzeczywistych, określona jest wzorem \(f(x)=(m-1)x^2-2x-m+1\). Wyznacz wszystkie wartości parametru \(m\), dla których wykres funkcji \(f\) przecina się z prostą o równaniu \(y=-x+1\) w dwóch punktach, których pierwsze współrzędne mają przeciwne znaki.
\(m\in (-\infty ,0)\cup (1,+\infty )\)
Wyznacz wszystkie wartości parametru \(a\), dla których wykresy funkcji \(f\) i \(g\), określonych wzorami \(f(x)=x-2\) oraz \(g(x)=5-ax\), przecinają się w punkcie o obu współrzędnych dodatnich.
\(a\in \left(-1;\frac{5}{2}\right)\)