Zbiór zadań - współczynniki we wzorze funkcji kwadratowej

Drukuj
Poziom podstawowy
Na wykresie przedstawiony jest trójmian \(y = ax^2 + bx + c\). Wynika z tego, że:
A.\( b\lt 0 \)
B.\( b>0 \)
C.\( b\le 0 \)
D.\( b\ge 0 \)
B
Funkcja kwadratowa \(f(x)=x^2+bx+c\) nie ma miejsc zerowych. Wykaż, że \(1+c\gt b\).
Wykresem funkcji kwadratowej \(f\) określonej wzorem \(f(x)=x^2+bx+c\) jest parabola, na której leży punkt \(A=(0,-5)\). Osią symetrii tej paraboli jest prosta o równaniu \(x=7\). Oblicz wartości współczynników \(b\) i \(c\).
\(b=-14\), \(c=-5\)
Dana jest funkcja \(f(x)=-3x^2+bx+c\) dla \(x\in \mathbb{R} \). Prosta o równaniu \(x=2\) jest osią symetrii paraboli będącej jej wykresem, a zbiorem wartości funkcji \(f\) jest przedział \((-\infty ;21\rangle \). Wyznacz współczynniki \(b\) i \(c\).
\(b=12, c=9\)
Wykres funkcji kwadratowej \(f\) określonej wzorem \(f(x)=ax^2+bx+c\) ma z prostą o równaniu \(y=6\) dokładnie jeden punkt wspólny. Punkty \(A=(-5,0)\) i \(B=(3,0)\) należą do wykresu funkcji \(f\). Oblicz wartości współczynników \(a\), \(b\) oraz \(c\).
\(a=-\frac{3}{8}\), \(b=-\frac{3}{4}\), \(c=\frac{45}{8}\)