Matura podstawowa - zbiór zadań - walec

Drukuj
Poziom podstawowy
Promień \(AS\) podstawy walca jest równy wysokości \(OS\) tego walca. Sinus kąta \(OAS\) (zobacz rysunek) jest równy
A.\( \frac{1}{2} \)
B.\( \frac{\sqrt{2}}{2} \)
C.\( \frac{\sqrt{3}}{2} \)
D.\( 1 \)
B
Pole powierzchni bocznej walca jest równe \(16\pi\), a promień jego podstawy ma długość \(2\). Wysokość tego walca jest równa
A.\( 4 \)
B.\( 8 \)
C.\( 4\pi \)
D.\( 8\pi \)
A
Dany jest walec, w którym wysokość jest równa promieniowi podstawy. Objętość tego walca jest równa \(27\pi\). Wynika stąd, że promień podstawy tego walca jest równy
A.\( 9 \)
B.\( 6 \)
C.\( 3 \)
D.\( 2 \)
C
Przekrojem osiowym walca jest kwadrat o przekątnej długości \(12\). Objętość tego walca jest zatem równa
A.\( 36\pi\sqrt{2} \)
B.\( 108\pi\sqrt{2} \)
C.\( 54\pi \)
D.\( 108\pi \)
Przekątna przekroju osiowego walca jest równa \(4\). Przekątna ta tworzy z bokiem odpowiadającym wysokości kąt \(30^\circ \). Objętość walca wynosi
A.\( 2\sqrt{3}\pi \)
B.\( 3\sqrt{2}\pi \)
C.\( 8\sqrt{3}\pi \)
D.\( \frac{8\sqrt{3}\pi}{3} \)
A