W kartezjańskim układzie współrzędnych \((x, y)\) dane są cztery okręgi: \(o_{1}, o_{2}, o_{3}, o_{4}\), o równaniach: \[ \begin{aligned} & o_{1}:(x-1)^{2}+(y-2)^{2}=1 \\[6pt] & o_{2}:(x+1)^{2}+(y+2)^{2}=9 \\[6pt] & o_{3}:(x-3)^{2}+(y-4)^{2}=4 \\[6pt] & o_{4}:(x+3)^{2}+(y+4)^{2}=16 \end{aligned} \]
Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.
Okręgiem, który
nie ma żadnego punktu wspólnego z osiami układu współrzędnych \((x, y)\), jest
A.\(o_{1}\)
B.\(o_{2}\)
C.\(o_{3}\)
D.\(o_{4}\)