Matura podstawowa - zbiór zadań - równania wymierne

Drukuj
Poziom podstawowy
Rozwiązaniem równania \(\frac{(x^2-2x-3)\cdot (x^2-9)}{x-1}=0\) nie jest liczba
A.\( -3 \)
B.\( -1 \)
C.\( 1 \)
D.\( 3 \)
Równanie \(\frac{(x-2)(x+4)}{(x-4)^2}=0\) ma dokładnie
A.jedno rozwiązanie \( x=2 \)
B.jedno rozwiązanie\( x=-2 \)
C.dwa rozwiązania \( x=2, x=-4 \)
D.dwa rozwiązania \( x=-2, x=4 \)
C
Równanie \(\frac{x^2-9}{x-3}=0\):
A.nie ma rozwiązań
B.ma dokładnie jedno rozwiązanie
C.ma dokładnie dwa rozwiązania
D.ma dokładnie trzy rozwiązania
B
Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.
Równanie \[\frac{(4x-6)(x-2)^2}{2x(x-1{,}5)(x+6)}=0\] ma w zbiorze liczb rzeczywistych
A.dokładnie jedno rozwiązanie: \( x=2 \).
B.dokładnie dwa rozwiązania: \( x= 1{,}5,\ x= 2 \).
C.dokładnie trzy rozwiązania: \( x= −6,\ x= 0,\ x= 2 \).
D.dokładnie cztery rozwiązania: \( x= −6,\ x= 0,\ x= 1{,}5,\ x= 2 \).
A
Rozwiąż równanie: \(\frac{6x-1}{3x-2}=3x+2\)
\(x=-\frac{1}{3}\) lub \(x=1\)
Rozwiąż równanie \(\frac{x+8}{x-7}=2x\).
\(x=-\frac{1}{2}\) lub \(x=8\)
Rozwiąż równanie: \[\frac{(4x+1)(x-5)}{(2x-10)(x+3)}=0\]
\(x=-\frac{1}{4}\)
Dane jest równanie \[ \frac{2}{2 x+1}=\frac{x-1}{x+2} \]
Wyznacz dziedzinę tego równania. Rozwiąż to równanie.
Dziedzina: \(x\ne-\frac{1}{2}\) i \(x\ne -2\)
Rozwiązania: \(x=-1\) oraz \(x=\frac{5}{2}\)
Rozwiąż równanie \[\frac{x+3}{x-1}=\frac{x}{2 x-2}\] Zapisz konieczne założenie i obliczenia.
\(x=-6\)
Tematy nadrzędne