Zbiór zadań - podobieństwo figur

Drukuj
Poziom podstawowy
W trójkącie \(ABC\) punkt \(D\) leży na boku \(BC\), a punkt \(E\) leży na boku \(AB\). Odcinek \(DE\) jest równoległy do boku \(AC\), a ponadto \(|BD|=10\), \(|BC|=12\) i \(|AC|=24\) (zobacz rysunek). Długość odcinka \(DE\) jest równa
A.\( 22 \)
B.\( 20 \)
C.\( 12 \)
D.\( 11 \)
B
Przez punkt przecięcia wysokości trójkąta równobocznego \(ABC\) poprowadzono prostą \(DE\) równoległą do podstawy \(AB\) (zobacz rysunek). Stosunek pola trójkąta \(ABC\) do pola trójkąta \(CDE\) jest równy
A.\( 9:4 \)
B.\( 4:1 \)
C.\( 4:9 \)
D.\( 3:2 \)
A
Stosunek obwodów dwóch sześciokątów foremnych wynosi \(\frac{3}{4}\), a długość boku większego z nich jest równa \(12\) cm. Mniejszy sześciokąt foremny ma bok długości:
A.\( 27 \) cm
B.\( 48 \) cm
C.\( 16 \) cm
D.\( 9 \) cm
D
W trapezie \(ABCD\) przekątne przecinają się w punkcie \(P\). Punkt \(P\) dzieli przekątne na odcinki długości: \(|AP|=8\), \(|PC|=3\) i \(|BP|=12\). Długości podstaw \(AB\) i \(CD\) trapezu różnią się o \(15\). Oblicz długość odcinka \(DP\) oraz długości podstaw \(AB\) i \(CD\) trapezu.
\(|DP|=4{,}5; |CD|=9; |AB|=24\)
Ramiona trapezu równoramiennego \(ABCD\) przedłużono i przecięły się w punkcie \(E\) (patrz rysunek). Wiadomo, że \(|CD|=4, |DE|=6\) oraz \(|AB|=|CE|\). Oblicz pole trapezu \(ABCD\).
\(10\sqrt{2}\)
Dany jest trapez \(ABCD\) o podstawach \(AB\) i \(CD\). Przekątne \(AC\) i \(BD\) tego trapezu przecinają się w punkcie \(S\) (zobacz rysunek) tak, że \(\frac{|AS|}{|SC|}=\frac{3}{2}\). Pole trójkąta \(ABS\) jest równe \(12\). Oblicz pole trójkąta \(CDS\).
\(\frac{16}{3}\)
Dany jest trójkąt równoramienny \(ABC\), w którym \(|AC|=|BC|\). Dwusieczna kąta \(BAC\) przecina bok \(BC\) w takim punkcie \(D\), że trójkąty \(ABC\) i \(BDA\) są podobne (zobacz rysunek). Oblicz miarę kąta \(BAC\).
\(72^\circ \)
Dany jest trójkąt równoboczny \(ABC\) o boku długości \(24\). Punkt \(E\) leży na boku \(AB\), a punkt \(F\) - na boku \(BC\) tego trójkąta. Odcinek \(EF\) jest równoległy do boku \(AC\) i przechodzi przez środek \(S\) wysokości \(CD\) trójkąta \(ABC\) (zobacz rysunek). Oblicz długość odcinka \(EF\).
\(|EF|=18\)
Dany jest trójkąt \(ABC\). Na boku \(AB\) tego trójkąta wybrano punkt \(D\), taki, że \(|AD| = \frac{1}{4}|AB|\), a na boku \(BC\) wybrano taki punkt \(E\), że \(|BE| = \frac{1}{5}|BC|\) (zobacz rysunek poniżej). Pole trójkąta \(ABC\) jest równe \(20\).
Oblicz pole trójkąta \(DBE\).
\(P=3\)
Na podstawie twierdzenia Pitagorasa można udowodnić bardziej ogólną własność niż ta, o której mówi samo to twierdzenie.
Rozważmy trójkąt prostokątny \(ABC\) o kącie prostym przy wierzchołku \(A\). Niech każdy z boków tego trójkąta: \(CA\), \(AB\), \(BC\) będzie podstawą trójkątów podobnych, odpowiednio: \(CAW_1\), \(ABW_2\), \(CBW_3\). Trójkąty te mają odpowiadające sobie kąty o równych miarach, odpowiednio przy wierzchołkach: \(W_1, W_2, W_3\). Pola trójkątów: \(CAW_1\), \(ABW_2\), \(CBW_3\) oznaczymy odpowiednio jako \(P_1\), \(P_2\), \(P_3\). Udowodnij, że: \[P_3=P_1+P_2\]
Trzy różne punkty \(A\), \(B\) i \(D\) leżą na okręgu o środku w punkcie \(S\). Odcinek \(BD\) jest średnicą tego okręgu. Styczne \(k\) i \(l\) do tego okręgu, odpowiednio w punktach \(A\) i \(B\), przecinają się w punkcie \(C\) (zobacz rysunek poniżej).
Wykaż, że trójkąty \(ACB\) i \(ASD\) są podobne.
Pole trójkąta \(ABC\) równe jest \(S\). Każdy bok trójkąta podzielono w stosunku \(x : y : x\), gdzie \(x\) i \(y\) są pewnymi liczbami dodatnimi. Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków trójkąta (zobacz rysunek).
\(S\left (1-3\left (\frac{x}{2x+y}\right )^2\right )\)
Dany jest trójkąt równoramienny \(ABC\), w którym podstawa \(AB\) ma długość \(12\), a każde z ramion \(AC\) i \(BC\) ma długość równą \(10\). Punkt \(D\) jest środkiem ramienia \(BC\) (zobacz rysunek). Oblicz sinus kąta \(\alpha \), jaki środkowa \(AD\) tworzy z ramieniem \(AC\) trójkąta \(ABC\).
\(\frac{24\sqrt{97}}{485}\)
Tematy nadrzędne