Dane są dwa kąty o miarach \(\alpha\) oraz \(\beta\), spełniające warunki:
\(\alpha \in (0^\circ, 180^\circ)\) i \(\operatorname{tg} \alpha = -\frac{2}{3}\) oraz \(\beta \in (0^\circ, 180^\circ)\) i \(\cos \beta = \frac{1}{\sqrt{10}}\).
Na rysunkach A-F w kartezjańskim układzie współrzędnych \((x, y)\) zaznaczono różne kąty - w tym kąt o mierze \(\alpha\) oraz kąt o mierze \(\beta\). Jedno z ramion każdego z tych kątów pokrywa się z dodatnią półosią \(Ox\), a drugie przechodzi przez jeden z punktów o współrzędnych całkowitych: \(A\) lub \(B\), lub \(C\), lub \(D\), lub \(E\), lub \(F\).
Uzupełnij tabelę. Wpisz w każdą pustą komórkę tabeli właściwą odpowiedź, wybraną spośród oznaczonych literami A-F.
1. | Kąt \(\alpha\) jest zaznaczony na rysunku | |
2. | Kąt \(\beta\) jest zaznaczony na rysunku | |