\[\begin{split} &W(P_{1})=W(0,0)=\begin{vmatrix}36\cdot 0^2+4\cdot 0-4 & 4\cdot 0\\4\cdot 0 & -4\cdot 0+2\end{vmatrix} =\begin{vmatrix}-4 & 0\\0 & 2\end{vmatrix} =-8-0=-8 \end{split} \]
\[\begin{split} &W(P_{2})=W(0,1)=\begin{vmatrix}36\cdot 0^2+4\cdot 1-4 & 4\cdot 0\\4\cdot 0 & -4\cdot 1+2\end{vmatrix} =\begin{vmatrix}0 & 0\\0 & -2\end{vmatrix} =0-0=0 \end{split} \]
\[\begin{split} W(P_{3})&=W(\frac{2}{3},-\frac{1}{3})=\begin{vmatrix}36\cdot \left ( \frac{2}{3} \right )^2+4\cdot \left ( -\frac{1}{3} \right )-4 & 4\cdot \frac{2}{3}\\4\cdot \frac{2}{3} & -4\cdot \left ( -\frac{1}{3} \right )+2\end{vmatrix} =\begin{vmatrix}\frac{32}{3} & \frac{8}{3}\\\frac{8}{3} & \frac{10}{3}\end{vmatrix} =\\[6pt]&= \frac{320}{9}-\frac{64}{9}=\frac{256}{9} \end{split}\]
\[\begin{split} W(P_{4})&=W(-\frac{2}{3},-\frac{1}{3})=\begin{vmatrix}36\cdot \left ( -\frac{2}{3} \right )^2+4\cdot \left ( -\frac{1}{3} \right )-4 & 4\cdot \left ( -\frac{2}{3} \right )\\4\cdot \left ( -\frac{2}{3} \right ) & -4\cdot \left ( -\frac{1}{3} \right )+2\end{vmatrix} =\begin{vmatrix}\frac{32}{3} & -\frac{8}{3}\\-\frac{8}{3} & \frac{10}{3}\end{vmatrix} =\\[6pt]&= \frac{320}{9}-\frac{64}{9}=\frac{256}{9} \end{split} \]