Area of a Triangle

To find the area of a triangle, multiply the base by the height, and then divide by \(2\). \[ A = \frac{1}{2}ah\] The division by \(2\) comes from the fact that a parallelogram can be divided into \(2\) triangles, like in the diagram bellow: To find the area of a triangle we can use some more formulaes:
Formula Diagram
\[ A = \frac{1}{2}ah\] [obrazek]
\[A=\frac{1}{2}ab\sin \gamma \] [obrazek]
\[ A=\sqrt{p(p-a)(p-b)(p-c)} \] where:
\(p=\frac{a+b+c}{2}\)
[obrazek]
\[ A=\frac{abc}{4R} \] [obrazek]
\[ A=2R^2\sin \alpha \sin \beta \sin \gamma \] [obrazek]
\[ A=rp \] where:
\(p=\frac{a+b+c}{2}\)
[obrazek]
Next topic
Derivatives