Podstawą graniastosłupa prostego \(ABCDEF\) jest trójkąt prostokątny \(ABC\), w którym \(|\sphericalangle ACB=90^\circ |\) (zobacz rysunek). Stosunek długości przyprostokątnej \(AC\) tego trójkąta do długości przyprostokątnej \(BC\) jest równy \(4:3\). Punkt \(S\) jest środkiem okręgu opisanego na trójkącie \(ABC\), a długość odcinka \(SC\) jest równa \(5\). Pole ściany bocznej \(BEFC\) graniastosłupa jest równe \(48\). Oblicz objętość tego graniastosłupa.