W tym nagraniu wideo pokazuję jak wykonywać działania na potęgach o wykładniku wymiernym. Przez pierwsze 8 minut nagrania przypominam również zasady wykonywania działań na potęgach o wykładniku całkowitym.
Czas nagrania: 30 min.
Liczba \( 3^{30}\cdot 9^{90} \) jest równa:
A.\(3^{210} \)
B.\(3^{300} \)
C.\(9^{120} \)
D.\(27^{2700} \)
A
Iloraz \(125^5:5^{11}\) jest równy
A. \(5^{-6}\)
B. \(5^{16}\)
C. \(25^{-6}\)
D. \(25^2\)
D
Liczba \(\frac{9^5\cdot 5^9}{45^5}\) jest równa
A.\( 45^{40} \)
B.\( 45^9 \)
C.\( 9^4 \)
D.\( 5^4 \)
D
Liczba \(\frac{5^{12}\cdot 9^5}{15^{10}}\) jest równa
A.\( 25 \)
B.\( 3^7 \)
C.\( 3^3 \)
D.\( \frac{25}{27} \)
A
Liczba \(\left (\frac{2^{-2}\cdot 3^{-1}}{2^{-1}\cdot 3^{-2}} \right )^0\) jest równa
A.\( 1 \)
B.\( 4 \)
C.\( 9 \)
D.\( 36 \)
A
Liczba \(\sqrt[3]{{(-8)}^{-1}}\cdot {16}^{\frac{3}{4}}\) jest równa
A.\( -8 \)
B.\( -4 \)
C.\( 2 \)
D.\( 4 \)
B
Liczba \(128^{-4}:\left ( \frac{1}{32} \right )^4\) jest równa
A.\( 4^{-4} \)
B.\( 2^{-4} \)
C.\( 2^4 \)
D.\( 4^4 \)
A
Liczba \(7^{\frac{4}{3}}\cdot \sqrt[3]{7^5}\) jest równa
A.\( 7^{\frac{4}{5}} \)
B.\( 7^3 \)
C.\( 7^{\frac{20}{9}} \)
D.\( 7^2 \)
B
Trzecia część liczby \(3^{150}\) jest równa:
A.\( 1^{50} \)
B.\( 1^{150} \)
C.\( 3^{50} \)
D.\( 3^{149} \)
D
Wartość wyrażenia \(5^{100}+5^{100}+5^{100}+5^{100}+5^{100}\) jest równa
A.\( 5^{500} \)
B.\( 5^{101} \)
C.\( 25^{100} \)
D.\( 25^{500} \)
B
Połowa sumy \(4^{28}+4^{28}+4^{28}+4^{28}\) jest równa
A.\(2^{30} \)
B.\(2^{57} \)
C.\(2^{63} \)
D.\(2^{112} \)
B
Liczbę \(x=2^2\cdot 16^{-4}\) można zapisać w postaci
A.\( x=2^{14} \)
B.\( x=2^{-14} \)
C.\( x=32^{-2} \)
D.\( x=2^{-6} \)
B
Wiadomo, że \(x^{0,1205}=6\). Wtedy \(x^{0,3615}\) równa się
A.\( \sqrt[3]{6} \)
B.\( 216 \)
C.\( 36 \)
D.\( 3 \)
B
Dana jest liczba \(x=63^2\cdot \left (\frac{1}{3} \right )^4\). Wtedy
A.\( x=7^2 \)
B.\( x=7^{-2} \)
C.\( x=3^8 \cdot 7^2 \)
D.\( x=3 \cdot 7 \)
A
Iloczyn \(\ 81^2\cdot 9^4\ \) jest równy
A.\( 3^4 \)
B.\( 3^0 \)
C.\( 3^{16} \)
D.\( 3^{14} \)
C
Liczba \( \frac{1}{2}\cdot 2^{2014} \) jest równa
A.\(2^{2013} \)
B.\(2^{2012} \)
C.\(2^{1007} \)
D.\(1^{2014} \)
A
Liczba \(3^{\frac{9}{4}}\) jest równa
A.\( 3\cdot \sqrt[4]{3} \)
B.\( 9\cdot \sqrt[4]{3} \)
C.\( 27\cdot \sqrt[4]{3} \)
D.\( 3^9\cdot 3^{\frac{1}{4}} \)
B
Liczba \(2^{\frac{4}{3}}\cdot \sqrt[3]{2^5}\) jest równa