Matura podstawowa - kurs - część 20 - zadania

Drukuj
Poziom podstawowy
Cały kurs na: http://www.matemaks.pl/matematyka-matura-podstawowa-kurs.html.
Funkcja \(f\) określona jest wzorem \(f(x)=\sqrt{x+2\sqrt{6}}\). Wartość funkcji \(f\) dla argumentu \(x=(\sqrt{3}-\sqrt{2})^2\) jest równa
A.\( \sqrt{2} \)
B.\( \sqrt{3} \)
C.\( \sqrt{5} \)
D.\( \sqrt{6} \)
C
Funkcja \(f\) jest określona wzorem \(f(x)=\frac{2x-8}{x}\) dla każdej liczby rzeczywistej \(x \ne 0\). Wówczas wartość funkcji \(f(\sqrt{2})\) jest równa
A.\( 2-4\sqrt{2} \)
B.\( 1-2\sqrt{2} \)
C.\( 1+2\sqrt{2} \)
D.\( 2+4\sqrt{2} \)
A
Funkcja \(f\) przyporządkowuje każdej liczbie naturalnej większej od \(1\) jej największy dzielnik będący liczbą pierwszą. Spośród liczb: \(f(42\)), \(f(44)\), \(f(45)\), \(f(48)\) największa to
A.\( f(42) \)
B.\( f(44) \)
C.\( f(45) \)
D.\( f(48) \)
B
Znajdź wszystkie argumenty \(x\) dla których funkcje \(f(x)=x-3\) oraz \(g(x)=-\frac{2}{x}\) przyjmują tę samą wartość.
\(x=1\) lub \(x=2\)
Funkcja \(f\) jest określona wzorem \(f(x)=\frac{2x-b}{x-9}\) dla \(x \ne 9\). Ponadto wiemy, że \(f(4)=-1\). Oblicz współczynnik \(b\).
\(b=3\)
Dana jest funkcja \(f(x)=\frac{x^2+2}{1-b}\). Oblicz współczynnik \(b\) jeżeli wiadomo, że \(f(2) = -3\).
\(b=3\)
Funkcja \(f\) jest określona wzorem \(f(x)=\frac{2x}{x-1}\) dla \(x\ne 1\). Wartość funkcji \(f\) dla argumentu \(x=2\) jest równa
A.\( 2 \)
B.\( -4 \)
C.\( 4 \)
D.\( -2 \)
C
Dana jest funkcja \(h(x)=\left ( -\frac{1}{3}m+2 \right)x+\frac{3}{2}m-1\). Funkcja ta dla argumentu \(0\) przyjmuje wartość \(5\). Wówczas:
A.\( m=9 \)
B.\( m=6 \)
C.\( m=4 \)
D.\( m=2 \)
C
Do wykresu funkcji \( f(x)=\frac{a}{x+1} \) określonej dla \(x\ne -1\) należy punkt \( A=(-2,3) \) dla \( a \) równego:
A.\(-3 \)
B.\(3 \)
C.\(-8 \)
D.\(8 \)
A
Do wykresu funkcji \(f(x)=(m-1)x+m^2+1\) należy punkt \(P=(0,5)\). Parametr \(m\) może być równy
A.\( 0 \)
B.\( 1 \)
C.\( 2 \)
D.\( \sqrt{6} \)
C
Do wykresu funkcji \(f(x)=\frac{a}{x-3}\) należy punkt \(A=(1,2)\). Wobec tego:
A.\( a=-4 \)
B.\( a=-3 \)
C.\( a=-2 \)
D.\( a=-1 \)
A
Tematy nadrzędne