Egzamin ósmoklasisty 2018 grudzień

Drukuj
Szkoła podstawowa
Zadanie 1. (1 pkt)
Firma przesyłkowa korzysta z paczkomatów do samodzielnego nadawania i odbierania przesyłek przez klientów. Maksymalne wymiary prostopadłościennej paczki, którą można nadać za pośrednictwem tej firmy, wynoszą \(38 \text{cm} \times 41 \text{cm} \times 64 \text{cm}\), a masa przesyłki nie może być większa niż \(25\) kg. W tabeli zapisano wymiary i masę czterech paczek.
Nr paczkiWymiaryMasa
\(1\)\(37 \text{cm} \times 41 \text{cm} \times 66 \text{cm}\)\(23\) kg
\(2\)\(38 \text{cm} \times 38 \text{cm} \times 59 \text{cm}\)\(25\) kg
\(3\)\(35 \text{cm} \times 40 \text{cm} \times 64 \text{cm}\)\(26\) kg
\(4\)\(26 \text{cm} \times 39 \text{cm} \times 63 \text{cm}\)\(22\) kg
Które z tych paczek mogą być nadane przez paczkomat tej firmy? Wybierz właściwą odpowiedź spośród podanych.
A.Tylko \(1\), \(2\) i \(4\)
B.Tylko \(2\) i \(3\)
C.Tylko \(3\) i \(4\)
D.Tylko \(2\) i \(4\)
E.Tylko \(4\)
Film
Odp
Nauka
Odpowiedź: D
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 2. (1 pkt)
Poniżej zamieszczono fragment etykiety z jogurtu o masie \(150\) g.
Wartość odżywczaw \(100\) g
energia\(290\) kJ / \(69\) kcal
tłuszcz
w tym kwasy nasycone
\(3{,}0\) g
\(1{,}9\) g
węglowodany
w tym cukry
\(5{,}9\) g
\(5{,}9\) g
błonnik\(0\) g
białko\(4{,}6\) g
sól\(0{,}15\) g
wapń\(167 \text{ mg}^*\)
witamina B2\(0{,}25\text{ mg}^*\)
\(^* 1 \text{ mg} = 0{,}001\) g
Uzupełnij poniższe zdania. Wybierz odpowiedź spośród oznaczonych literami A i B oraz odpowiedź spośród oznaczonych literami C i D.
Zjedzenie całego jogurtu dostarcza organizmowi około
A
B
wapnia.
A.\( 167 \) mg
B.\( 250 \) mg
Zjedzenie całego jogurtu dostarcza organizmowi
C
D
razy więcej białka niż witaminy B2.
C.\( 18{,}4 \)
D.\( 18\ 400\)
Film
Odp
Nauka
Odpowiedź: BD
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 3. (1 pkt)
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.
\(120\%\) liczby \(180\) to tyle samo, co \(180\%\) liczby \(120\).PF
\(20\%\) liczby \(36\) to tyle samo, co \(40\%\) liczby \(18\).PF
Film
Odp
Nauka
Odpowiedź: PP
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 4. (1 pkt)
Liczba \(x\) jest najmniejszą liczbą dodatnią podzielną przez \(3\) i \(4\), a liczba \(y\) jest największą liczbą dwucyfrową podzielną przez \(2\) i \(9\). Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Najmniejsza wspólna wielokrotność liczb \(x\) i \(y\) jest równa
A.\( 72 \)
B.\( 108 \)
C.\( 180 \)
D.\( 216 \)
Film
Odp
Nauka
Odpowiedź: C
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 5. (1 pkt)
Na rysunku przedstawiono fragment podłogi pokrytej kaflami w kształcie kwadratów o boku długości \(60\) cm i kaflami w kształcie jednakowych prostokątów (patrz rysunek I). Na podłodze tej położono prostokątny dywan (patrz rysunek II). Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.
Dywan ma powierzchnię większą niż powierzchnia \(4\) kwadratowych kafli.PF
Dywan ma wymiary \(90 \text{ cm} \times 120 \text{ cm}\)PF
Film
Odp
Nauka
Odpowiedź: FF
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 6. (1 pkt)
Prędkość rozchodzenia się impulsu elektrycznego u człowieka wynosi około \(2\) metrów na sekundę. U roślin impuls elektryczny może rozchodzić się z prędkością około \(60\) centymetrów na minutę. Ile razy prędkość rozchodzenia się impulsu elektrycznego u człowieka jest większa od prędkości rozchodzenia się impulsu elektrycznego u roślin? Wybierz właściwą odpowiedź spośród podanych.
A.W przybliżeniu \(2\) razy.
B.W przybliżeniu \(20\) razy.
C.W przybliżeniu \(200\) razy.
D.W przybliżeniu \(2000\) razy.
Film
Odp
Nauka
Odpowiedź: C
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 7. (1 pkt)
Monika poprawnie zaokrągliła liczbę \(3465\) do pełnych setek i otrzymała liczbę \(x\), a Paweł poprawnie zaokrąglił liczbę \(3495\) do pełnych tysięcy i otrzymał liczbę \(y\). Czy liczby \(x\) i \(y\) są równe?
Wybierz odpowiedź A (Tak) albo B (Nie) i jej uzasadnienie spośród 1, 2 albo 3.
A. Tak, ponieważ 1. początkowa liczba Moniki jest mniejsza od początkowej liczby Pawła.
2. cyfra tysięcy każdej z początkowych liczb jest taka sama.
B. Nie,
3. otrzymane zaokrąglenia różnią się o 500.
Film
Odp
Nauka
Odpowiedź: B3
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 8. (1 pkt)
Dana jest liczba \(a=3\sqrt{2}-4\).
Uzupełnij poniższe zdania. Wybierz odpowiedź spośród oznaczonych literami A i B oraz odpowiedź spośród oznaczonych literami C i D.
Liczba o \(2\) większa od liczby \(a\) jest równa
A
B
.
A.\( 5\sqrt{2}-4 \)
B.\( 3\sqrt{2}-2 \)
Liczba \(2\) razy większa od liczby \(a\) jest równa
C
D
.
C.\( 6\sqrt{4}-8 \)
D.\( 6\sqrt{2}-8 \)
Film
Odp
Nauka
Odpowiedź: BD
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 9. (1 pkt)
Państwo Nowakowie mają trzy córki i jednego syna. Średnia wieku wszystkich dzieci państwa Nowaków jest równa \(10\) lat, a średnia wieku wszystkich córek jest równa \(8\) lat.
Ile lat ma syn państwa Nowaków? Wybierz właściwą odpowiedź spośród podanych.
A.\( 9 \)
B.\( 11 \)
C.\( 12 \)
D.\( 16 \)
Film
Odp
Nauka
Odpowiedź: D
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 10. (1 pkt)
Do gry planszowej używane są dwa bączki o kształtach przedstawionych na rysunkach. Każdy bączek po zatrzymaniu na jednym boku wielokąta wskazuje liczbę umieszczoną na jego tarczy. Na rysunku I bączek ma kształt pięciokąta foremnego z zaznaczonymi liczbami od \(1\) do \(5\). Na rysunku II bączek ma kształt sześciokąta foremnego z zaznaczonymi liczbami od \(1\) do \(6\). Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.
Prawdopodobieństwo otrzymania liczby większej niż \(3\) na bączku z rysunku I jest większe niż \(\frac{1}{2}\)PF
Uzyskanie nieparzystej liczby na bączku z rysunku I jest tak samo prawdopodobne, jak uzyskanie nieparzystej liczby na bączku z rysunku II.PF
Film
Odp
Nauka
Odpowiedź: FF
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 11. (1 pkt)
O liczbie \(x\) wiemy, że \(\frac{1}{3}\) tej liczby jest o \(\frac{3}{4}\) większa od \(\frac{1}{6}\) tej liczby.
Które równanie pozwoli wyznaczyć liczbę \(x\)? Wybierz właściwą odpowiedź spośród podanych.
A.\( \frac{2}{3}x=\frac{1}{6}x+\frac{3}{4} \)
B.\( \frac{1}{3}x+\frac{3}{4}=\frac{5}{6}x \)
C.\( \frac{1}{3}x=\frac{1}{6}x+\frac{3}{4} \)
D.\( \frac{1}{3}x+\frac{3}{4}=\frac{1}{6}x \)
Film
Odp
Nauka
Odpowiedź: C
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 12. (1 pkt)
W trójkącie \(ABC\) największą miarę ma kąt przy wierzchołku \(C\). Miara kąta przy wierzchołku \(A\) jest równa \(48^\circ \), a miara kąta przy wierzchołku \(B\) jest równa różnicy miary kąta przy wierzchołku \(C\) oraz miary kąta przy wierzchołku \(A\).
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.
Kąt przy wierzchołku \(B\) ma miarę \(48^\circ\).PF
Trójkąt \(ABC\) jest prostokątny.PF
Film
Odp
Nauka
Odpowiedź: FP
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 13. (1 pkt)
W układzie współrzędnych zaznaczono dwa punkty: \(A=(−8, −4)\) i \(P=(−2, 2)\). Punkt \(P\) jest środkiem odcinka \(AB\).
Jakie współrzędne ma punkt \(B\)? Wybierz właściwą odpowiedź spośród podanych.
A.\( (4,8) \)
B.\( (-10,-2) \)
C.\( (-10,8) \)
D.\( (4,-2) \)
Film
Odp
Nauka
Odpowiedź: A
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 14. (1 pkt)
Cztery jednakowe drewniane elementy, każdy w kształcie prostopadłościanu o wymiarach \(2 \text{ cm} \times 2 \text{ cm} \times 9 \text{ cm}\), przyklejono do metalowej płytki w sposób pokazany na rysunku I. W ten sposób przygotowano formę, którą wypełniono masą gipsową, i tak otrzymano gipsowy odlew w kształcie prostopadłościanu, pokazany na rysunku II.
Uzupełnij zdania. Wybierz odpowiedź spośród oznaczonych literami A i B oraz odpowiedź spośród oznaczonych literami C i D.
Objętość drewna, z którego zbudowano formę, jest równa
A
B
.
A.\( 144 \text{ cm}^3 \)
B.\( 36 \text{ cm}^3 \)
Objętość gipsowego odlewu jest równa
C
D
.
C.\( 162 \text{ cm}^3 \)
D.\( 98 \text{ cm}^3 \)
Film
Odp
Nauka
Odpowiedź: AD
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 15. (1 pkt)
Na rysunkach przedstawiono ostrosłup prawidłowy i graniastosłup prawidłowy. Wszystkie krawędzie obu brył są jednakowej długości.
Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.
Suma długości wszystkich krawędzi ostrosłupa jest większa niż suma długości wszystkich krawędzi graniastosłupa.PF
Całkowite pole powierzchni ostrosłupa jest większe niż całkowite pole powierzchni graniastosłupa.PF
Film
Odp
Nauka
Odpowiedź: FF
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 16. (2 pkt)
Prostokąt \(ABCD\) o wymiarach \(7\) cm i \(8\) cm rozcięto wzdłuż prostej a na dwa trapezy tak, jak pokazano na rysunku. Odcinek CL ma długość \(3{,}2\) cm. Pole trapezu \(KBCL\) jest czterokrotnie mniejsze od pola prostokąta \(ABCD\). Oblicz długość odcinka \(KB\). Zapisz obliczenia.
Film
Odp
Nauka
Odpowiedź: \(|KB|=0{,}8\) cm
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 17. (2 pkt)
Na pozalekcyjne zajęcia sportowe zapisanych jest \(37\) osób. Uzasadnij, że w tej grupie są co najmniej 4 osoby, które urodziły się w tym samym miesiącu.
Film
Nauka
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 18. (2 pkt)
Cztery jednakowe prostopadłościenne klocki, każdy o wymiarach \(2 \text{ cm} \times 1 \text{ cm} \times 1 \text{ cm}\), ułożono tak, jak przedstawiono na rysunku. Następnie do tej budowli dołożono sześcienne klocki o krawędzi długości \(1\) cm tak, a by powstał prostopadłościan najmniejszy z możliwych.
Uzupełnij zdania. Wpisz w każdą lukę odpowiednią liczbę.
Liczba sześciennych klocków o krawędzi długości \(1\) cm, które należy dołożyć do budowli, jest równa ______. Najmniejszy z możliwych prostopadłościanów, który w ten sposób otrzymano, ma wymiary ___ cm \(\times\) ___ cm \(\times\) ___ cm.
Film
Odp
Nauka
Odpowiedź: \(19\) klocków
\(3 \text{ cm} \times 3 \text{ cm} \times 3 \text{ cm}\)
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 19. (3 pkt)
Agata postanowiła przygotować kartkę okolicznościową w kształcie prostokąta, ozdobioną wzorem dokładnie takim, jak przedstawiony na rysunku. Kartka ta będzie miała wymiary \(15 \text{ cm} \times 18 \text{ cm}\). Do jej ozdobienia Agata chce użyć jednakowych kwadratów, których bok wyraża się całkowitą liczbą centymetrów. Niektóre z tych kwadratów będzie musiała przeciąć na dwie lub na cztery jednakowe części. Oblicz maksymalną długość boku jedne go kwadratu. Do obliczeń przyjmij przybliżenie \(\sqrt{2}\approx1{,}4\). Zapisz obliczenia.
Film
Odp
Nauka
Odpowiedź: \(3\) cm
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 20. (3 pkt)
W wyborach na przewodniczącego klasy kandydowało troje uczniów: Jacek, Helena i Grzegorz. Każdy uczeń tej klasy oddał jeden ważny głos. Jacek otrzymał \(9\) głosów, co stanowiło \(36\%\) wszystkich głosów. Helena otrzymała o \(6\) głosów więcej niż Grzegorz. Oblicz, ile głosów otrzymała Helena, a ile - Grzegorz. Zapisz obliczenia.
Film
Odp
Nauka
Odpowiedź: Helena otrzymała \(11\) głosów, a Grzegorz otrzymał \(5\) głosów.
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Zadanie 21. (3 pkt)
Ania postanowiła pojechać autobusem do babci do miejscowości Sokółka. Z domu wyszła o godzinie \(8{:}00\), kilka minut czekała na przystanku, a następnie jechała autobusem. Do Sokółki dotarła o godzinie \(9{:}30\) i tam na przystanku spotkała się z babcią. Na wykresie w sposób uproszczony przedstawiono zależność prędkości, z jaką poruszała się Ania, od czasu. Oblicz długość trasy pokonanej przez Anię od wyjścia z domu do chwili spotkania z babcią. Zapisz obliczenia.
Film
Odp
Nauka
Odpowiedź: \(76\) km
Opcja dostępna tylko dla zalogowanych użytkowników.
Można tutaj ocenić swoją wiedzę w tym materiale.
W zależności od wybranej oceny materiał zostanie zaliczony lub zostaną zaplanowane powtórki.
Tematy nadrzędne i sąsiednie